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Abstract
Design patterns represent a generalized approach to
solving a related set of problems. Typically, a design
pattern does not  provide reusable code. Instead it provides
a common vocabulary and a generalized approach in an
application-independent manner. We have developed a
design pattern for use in controlling autonomous vehicles.
The control of individual components within an autonomous
vehicle will obviously differ from  one vehicle to another.
However, all of the components and subsystems must work
together as a whole, This overall control is carried out by
a Software  Control Architecture, and includes concepts
from artificial intelligence, computer vision, vehicle naviga-
tion, and graph theory. The Strategic-Tactical-Execution
Software Control Architecture (STESCA) was developed to
serve as a design pattern for autonomous vehicle control
systems. The STESCA approach is currendy being used to
control both an autonomous underwater vehicle and a land-
based wheeled autonomous vehicle in simulation.

1. Introduction

This paper presents a design pattern used to create soft-
ware control systems for autonomous or robotic vehicles. It
has been used to develop control systems for two different
types of vehicles (one an underwater vehicle, the other a
wheeled land-based vehicle) in simulation, and is currently
being implemented on a ‘real world’ land-based robot. We
begin with a discussion of design patterns, followed by an
overview of autonomous vehicles. We then present the
Strategic-Tactical-Execution Software Control Architecture
(STESCA) as a design pattern for use in controlling robotic
vehicles.

2. Design patterns

The simplest definition of a design pattern is that it
represents a generalized approach to solving a related set of
problems. In teaching an introductory course in computer

programming [l], Figure 1 is presented as a “common
approach” to program design. These are almost insultingly
simple, but they are commonly used in solving problems on
a computer. Fortunately, design patterns get quite a bit more
involved (and interesting) than this, or it would not make for
a very interesting topic. And design patterns are currently a
very hot topic, with a lot of interest within the community.

One of the reasons that design patterns are such a hot
topic is that they provide a form of reusability in computer
software. Hardware designers have long known the benefits
of reusability; the computer itself is rarely built from “the
ground up” (i.e., by designing and building each individual
component). Instead, many off-the-shelf components are
used. And when a new component is needed, it is usually not
designed in a vacuum. Rather, it is designed using ideas,
principles, and approaches learned in creating previous
similar components.

Reusability in computer software began in earnest with
libraries of modules (typically functions and procedures)
that could be used in many different applications. These
modules are often referred to as low-level routines. The
object-oriented (00) approach helped to extend the concept
of reusability into higher-level code by providing libraries of
classes that could be used in various applications. In either
case, however, the basic idea is the same: provide actual
code that can be used by several applications.

Design patterns offer an even higher level of reusability
for computer software: reuse at the design level. That is,
much like the design of a new hardware component, the
design proceeds using ideas, principles, and approaches
learned in creating previous designs. Wegner used the
analogy of a template in describing the class definition [2];
that is, the class definition serves as a template in creating
new objects. Similarly, the design pattern is like a template
during the design stage in that it serves as a template for the
new design.

Of course, there are defmitions for design patterns that
are much more involved than our simple definition. The
‘gospel’ for the 00 community comes from Gamma et al
[3], in which design patterns are described as “simple and
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Welcome/Header Message
Get Dam
Calculate Results
Output Results

Figure 1 a: ‘Common’ approach

Welcome/Header Message
Loop Until Done

Get Data
Calculate Interim Results
Output Interim Results

Calculate Final Results
Output Final Results

Figure 1 b: ‘Calculate as you go’ approach

Figure 1. Very simple design patterns

elegant solutions to specific problems in object-oriented
software design” [3, p. xi]. They then go on to state that
design patterns “capture solutions that have developed and
evolved over time. . . They reflect untold redesign and
recoding as developers have struggled for greater reuse and
flexibility in their software.” The authors then describe
several design patterns, and propose a way to organize them.
It should be noted, however, that while Gamma et al discuss
00 design patterns, there is nothing in their basic definition
that makes it an exclusive concept of the 00 community.

The organization of design patterns is also a very
important topic, and has been discussed in several recent
books and papers [3, 41. However, the organization of
reusable components is really nothing new, and is mainly a
numbers problem. That is, as the number of components
(design patterns, in this case) grows too large for a person to
grasp and understand, how can we organize (or classify)
them so that we can find the one that we need? This same
problem has been addressed to varying levels of success for
libraries of software components [5].’

3. Autonomous vehicles

An autonomous vehicle (AV) is both unmanned and
untethered. Unmanned means that there is no ‘person-in-the-
loop’ to make decisions should unexpected problems arise.
Untethered means that there is no communication with the
vehicle once it is underway, so it cannot request new or
additional instructions from a human operator.* Thus, an AV
must be able to recognize potential problems and respond to
them independently of human intervention.

’ The organization of components is also a problem for hardware - leafing
through any electronics catalog shows a multitude of components available.
In the same way that the software community is looking to the hardware
community for ideas and analogies concerning reusable components and
design, perhaps we should look also to them for ideas on organizing the
components...

2Actually, untethered only implies no communication to the vehicle. It could
be sending information back that was collected while underway (i.e., one-
way communication from the AV).

Since an AV is both unmanned and untethered, it must
have a fully specified mission that it can carry out under
normal circumstances. It must also be able to handle any
problems that can be ‘reasonably’ anticipated, such as obsta-
cle avoidance and path replanning. For those problems that
cannot be handled while underway, it must also have some
‘fall-back’ positions, such as skipping some portion(s) of the
mission or even aborting the entire remainder of the mission.

Controlling an Autonomous Vehicle (AV) is a highly
complex task. The control of individual components within
an AV generally falls under the realm of classical control
theory. As such, it has a solid mathematical foundation, is
well understood, and is relatively straightforward to
implement. However, for an AV to function properly, all of
the components and subsystems must work together as a
whole. This overall vehicle control goes far beyond classical
control theory. Concepts from artificial intelligence,
computer vision, vehicle navigation, and graph theory may
all be used together to implement ‘human-like’ reasoning as
applied to problems such as motion control, path planning,
and obstacle avoidance. [6]

There are three main problems must be addressed in
successfully controlling an AV. First, there is the control of
individual components within the AV. Second, there must be
a way of expressing a mission for the vehicle. Third, the
appropriate vehicle component commands must be created
from the stated mission, handling as many unforseen
circumstances as possible.

This overall control system can be carried out by a
Software Control Architecture (SCA). While many such
systems have been developed, none have been general
enough to be used on a variety of vehicles. STESCA, a tri-
level approach to vehicle control, has been used to
successfully control both an Autonomous Underwater
Vehicle (AUV) and a land-based wheeled AV. STESCA
was intended to serve as the basic design for control of any
type of autonomous vehicle. In moving from an underwater
vehicle to a land-based vehicle, this basic design is proving
itself as a design pattern.

A software control architecture (SCA) provides a
framework upon which a complete software control system
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can be built. It must be capable of representing and
responding to events and obstacles in the real world. It
should also help to manage the complexity associated with
the various vehicle subsystems, both hardware and software.
In other words, it must be able to handle the three main
problems previously discussed: mission specification,
individual component control, and conversion of the stated
mission into appropriate component commands taking into
account objects and events in the real world (A discussion
of alternative approaches is considered to be beyond the
scope of this paper, but may be found in [7]).

3. STESCA: the Strategic-Tactical-Execution
Software Control Architecture

An object-oriented (00) approach was used in creating
STESCA. This has been beneficial for many reasons. 00
modeling allows for ‘real world’ objects to be modeled
directly on the computer. Thus vehicle components are
clearly identifiable, they are not ‘hidden’ or ‘spread out’
between various routines and dam structures. 00 design
(OOD) encourages solving problems in a computer in the
same way as we solve problems in the ‘real world.’ Thus the
AUV version of STESCA is based upon the way that a
human crew controls a manned submarine. This provided a
working model to use as the basis for our approach.

There were two primary goals in developing STESCA.
First was to create a ‘generic’ framework to simplify the
process of creating an SCA for autonomous vehicles.
Second was to allow mission specification by ‘anyone’ with
a ‘minimal’ level of training (while it takes a team of
scientists and engineers to design and build an autonomous
vehicle, it should not take such a team to operate it). The
first goal led to a design pattern for an AV SCA that is the
subject of this paper (the second goal concerning mission
specification is discussed further in [7, 81).

STESCA is a @i-level  approach to vehicle control.
Mission specification occurs in the top Strategic level. The
middle Tactical level converts the mission specification into
actual vehicle component control commands, maintains data
collected during the mission, and is responsible for mission
and path replanning (should it be necessary) while the
vehicle is underway. The bottom Execution level consists of
the software interfaces to the individual vehicle components.

Consider the following story that presents a human
analogy for the three levels of STESCA. Suppose that your
spouse tells you to go to the store to get some milk. The
mission, expressed in the Strategic level, is simple: go to the
store, get some milk, and return home (note that path
planning is done ‘off-line’ before the mission begins). The
Tactical level accomplishes this by starting the car, backing
out of the driveway, driving to the store, etc. However, the
Tactical level has no working knowledge of how the vehicle

actually works, only how to turn the key, shift gears, step on
the brakes, and so on. It is the Execution level that translates
these commands into the actual electrical / mechanical
activities that control the vehicle, causing it to move.

3.1. The design of STESCA

The emphasis in STESCA is on what each level should
do, not how it is accomplished. This emphasis on what
rather than how maps directly into the object-oriented
approach, where the emphasis is on what the various objects
do rather than how they accomplish their various activities.
Figure 2 shows the major components of STESCA.

The Strategic level consists of the mission specification
system. The mission consists of a series of mission phases
[8,9]. A mission phase may be as simple as a single action,
such as transit or change depth. It may also be a collection
of these simple actions, or a collection of collections and
simple actions. These collections may be named and stored
in /retrieved from secondary storage. They may also be used
to create a set of ‘standard operating procedures’ (SOP’s).
As each phase is sent to the Tactical level, the success
(‘status’) is returned. If the phase successmlly completes, the
next phase is sent. If not, then an alternative phase may be
chosen. The mission specification system was designed
using inheritance, and was implemented via a linked list
(with the design details, of course, hidden from the user).
The class MissionPhase  includes all of the pointers and
methods necessary for constructing the list, and serves as the
root of an inheritance hierarchy for all possible phases.

The Tactical level (see Figure 2) has many components.
It is responsible for carrying out the various mission phases,
controlling and coordinating the various vehicle
components. The main components include the Vehicle
Commander, Navigator, Engineer, Mission Specialist,
Engineer, and three data stores: the World Model, Mission
Model, and Data Recorder.

The Vehicle Commander, which receives the mission
phases from the Strategic level, is responsible for carrying
out each phase. It coordinates the activities of the other
components of the Tactical level. The Navigator is
responsible for computing the location of the vehicle. The
Command Sender sends actual commands to the various
components of the Execution level, receiving back the
success (‘status’) of each command. The Engineer maintains
the status of each component in the Execution level, and
may check the status of the various components as
necessary. The Mission Specialist, which is optional, is
responsible for other mission dependent activities.

The three data stores in the Tactical level are the World
Model, the Mission Model, and the Data Recorder. The
World Model contains all the pertinent information known
ahead of time about the area(s) of operation. This infor-
mation may be used if mission or path re-planning becomes
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Strategic Level

Mission
Specification

Tactical Level

Mission Model

I I
Navigator Command Engineer Mission

Sender Specialist

Execution Level
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I

Vehicle
Component -

Figure 2: STESCA overview

necessary. The Mission Model is a log of all component component. The Strategic and Tactical levels are then built
commands and status checks sent to the Exectuion level. on top of this code. The mission specification system (in the
This information may be used after a mission is complete to Strategic level) is designed so that only minimal familiarity
assist in analyzing the success / failure of a mission. The with the vehicle is necessary. The Tactical level converts the
Data Recorder is used to store information collected during stated mission into appropriate component commands,
a mission. which are then sent to the Execution level.

The Execution level contains the interfaces to the various
vehicle components. This allows STESCA to be imple-
mented on virtually any type of vehicle. As previously
discussed, the control of individual components generally
falls under the realm of classical control theory. As
components are added to the vehicle, it is the responsibility
of the Tactical level to control and coordinate their actions
in carrying out the various mission phases.

3.2. STESCA as a design pattern

The t&level approach allows STESCA to be imple-
mented for virtually any robotic system. The Execution level
consists of the control code developed for each vehicle

In describing STESCA as a design pattern, we generally
follow the description proposed in [3]. STESCA would be
classified as structural and applying to objects. It is
structural in that it deals with the composition of and
collaboration between classes and objects. The intent is to
provide abstractions for the complex task of AV control.
The motivation is that all AV’s are faced with the same
types of problems (high-level mission specification,
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individual component control, and mapping the mission into
appropriate component control commands). STESCA
provides a layered approach to encapsulate these
responsibilities in a consistent fashion when moving from
one type of vehicle to another.

The applicability is primarily to autonomous vehicles, but
as previously discussed it should also apply to robotic
systems in general. It might even be possible to generalize
it even more to make it applicable in nearly any type of
control system application. The structure is as shown in
Figure 2, with the primary participants being the Mission
Specification, the Vehicle Commander which is composed
of the various Vehicle Components.

Collaborations between components are minimized as
much as possible. The end-user of the vehicle communicates
only with the Mission Specification. The Mission Specifica-
tion then communicates with the Vehicle Commander by
sending requests to execute mission phase. The Command
Sender communicates with the Vehicle Components by
sending component commands. The Engineer also commu-
nicates with the Vehicle Components, but is only allowed to
check their current status.

The consequences of using the pattern are fairly typical
of the 00 approach. The overall complexity of the system
is reduced to a more manageable level, but the increased
overhead of message passing makes the system less efficient
from a hardware point of view (obviously, however, this
becomes less and less of a concern due to the continually
increasing speed and decreasing cost of CPU and memory).
However this is the typical tradeoff between human
efficiency and machine efficiency. While there are defmitely
more efficient ways to control a robot from a hardware point
of view, we believe that STESCA represents a highly
efficient approach from a human point of view. The layered
approach, as well as the composition within the Tactical and
Execution levels, breaks the control problem into under-
standable components. As needs change, the components
can easily be replaced (or modified) as long as the new
component maintains the appropriate interface (for example,
there are many forms of navigation which can be used, and
it is also possible to switch between forms of navigation
while the vehicle is underway).

Before continuing, it is also worthwhile to compare
STESCA with design patterns which have already been
identified and catalogued.  Consider, for examples, the
Layers category [4]. Here we have layers of software that
provide interface to one another in a hierarchical fashion. In
STESCA there are three layers, but the user sees only the
mission specification and execution portions of the top
Strategic level (layer). The mission is executed by the
Strategic level sending appropriate messages to the Tactical
level, which in turn sends appropriate messages to the
Execution level. The end user of the vehicle need know
nothing about the Tactical or Execution levels, and the

Strategic level need know nothing about the Execution level.
It is the interface between the levels that is all important.
This is also very similar to the Adaptor pattern [3].

Event Notification [4] is also very important within the
Tactical and Execution levels, particularly between the
Tactical level’s Engineer and the various components in the
Execution level. While the Engineer can check on the status
of any component at any time, it is also up to the
components themselves to notify the Engineer (if possible)
of any problems that they experience. As such, the Engineer
is an Observer [3] of the Execution level components.

STESCA most likely exhibits properties of other design
patterns as well, either as a whole or within one of its three
levels. Therefore, it is most appropriate to identify STESCA
as a compound pattern (i.e., a design pattern which is
composed of other design patterns). This should not be too
surprising since the intended domain of applications (robotic
vehicles) is a specific and highly involved problem area.

While class diagrams are often used in describing design
patterns, it has been suggested that role diagrams are better
suited for describing object collaboration based patterns [4].
Referring once again to Figure 2, an overview of STESCA,
we see one form of a role diagram. This is especially true
within the Tactical level, which makes perfect sense given
its roots. The Tactical level in particular was modeled after
the way that a manned vehicle operates. Each member of the
crew (Vehicle Commander, Navigator, Engineer, Mission
Specialist, etc) is defined in terms of what that member does
(i.e., in terms of that member’s role).3

3.3. Applying the STESCA design pattern

Implementing STESCA on a land-based vehicle was
relatively straight-forward, and the initial prototype [lo]  was
developed in less than half the time that it took to create the
initial AUV prototype [S, 93, with both implementations
being done in C++. One primary consideration is determin-
ing what type of high-level commands will be needed by the
vehicle user. For instance, do we need to be able to tell the
vehicle to “move forward 50 meters,” “move forward 3
minutes,” and/or “move to the design lab.”

Another consideration that we are still grappling with is
mission phase failure [ 111. That is, if the vehicle fails to
achieve a particular mission phase, what should happen
then? The Navigator interface is also important, since it is
quite often desirable to be able to switch between different

’ It should be noted that although the roles are similar to those found in a
human crew, they are not identical. Interaction between human crew
membee are frequent and necessary. In STESCA, communication between
the various crew members only occurs via the Vehicle Commander. This
means that the crew members are only aware of themselves and the Vehicle
Commander. If they need any information, they get it from the Vehicle
Commander and do not care how or where that information comes from.
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forms of navigation (e.g., dead reckoning or GPS-based). At
this time we cannot really address the Mission Specialist as
this exists as a ‘stub’ in current implementations (for now we
are primarily concerned with controlling the vehicle, putting
it to good use is a subject of future research). For our
implementation, their were virtually no issues to consider at
the Execution level. That is because we are essentially users
of our vehicles, using the vehicle manufacturer’s interface as
the Execution level.

4. Conclusions

In summary, STESCA provides a way of handling the
complexity involved in controlling autonomous vehicles. It
serves as a design pattern in that it provides an approach
which can be used to control virtually any type of vehicle.
So far, it has been successfully used in simulation to control
both the Phoenix AUV [ 121 and the Pioneer ATRV [ 131,
and development has just begun for the Pioneer ATRV
vehicle itself. We have shown that STESCA is indeed a
design pattern for controlling robotic vehicles, and that since
it exhibits and includes other design patterns to various
degrees, it is more appropriately called a compound design
pattern.

In closing, however, we would like to revisit Figure la.
In using STESCA to create a mission and control an AV, we
find that four things occur: fust we get a “welcome to
STESCA” screen; second we enter the desired mission; third
the high-level mission is converted to individual vehicle
component commands; and fourth the component commands
are ‘output’ (not to a printer but to the vehicle components).
Maybe we haven’t come as far as we thought, as we are still
using that basic approach to problem solving. Then again,
maybe this is simply a classic case in which the beauty of the
design is in its simplicity.
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